Напыление металлов: технологии и используемое оборудование

Газодинамическое напыление порошковых материалов

Метод холодного газодинамического напыления (ХГН) используется с целью восстановления поверхности изделий, упрочнения и защиты металлов от коррозии, повышения тепло- и электропроводности и т.д.

Технология ХГН расширяет возможности газотермического напыления и позволяет формировать покрытия при пониженных температурах, что весьма важно для изделий и материалов, не допускающих воздействия высоких температур.

Технологии газотермического и газодинамического напыления используются для нанесения покрытий на поверхность металлов и изделий. Объединяет оба этих метода то, что для покрытия используются порошковые материалы.

Но, при газотермическом напылении попадающие на подложку частицы имеют высокую температуру, обычно выше температуры плавления материала.

Обратите внимание

В газодинамической технологии на подложку наносятся частицы с более низкой температурой, но имеющие очень высокую скорость (500…1000 м/с).

Распыляемые материалы – полимеры, карбиды, металлы – образуют термобарьерные, износо- и коррозионностойкие покрытия, которые выдерживают воздействия химически активных сред, высокие тепловые нагрузки. В качестве напыляемых (расходных) материалов используются мелко- и ультрадисперсные порошки с размером частиц 0,01-0,5 мкм.

Технология

Суть метода состоит в нанесении на обрабатываемую поверхность порошков металлов (или их смесей с керамическими порошками) с помощью сверхзвуковых потоков воздуха. Частицы напыляемого порошка ускоряются сверхзвуковой струей газа и направляются на покрываемую поверхность. При этом температура процесса существенно меньшей температуры плавления материала частиц.

Путем изменения режимов работы оборудования можно наносить однородные покрытия, либо создавать композиционные покрытия из механической смеси порошков. Можно также менять твердость, пористость и толщину напыляемого покрытия и др.

Покрытия

Структура покрытий представляет собой однородный металлический слой (в случае чисто металлических покрытий, создаваемых из одного металла) или металлический слой, структурированный частицами другого металла или керамики. Возможно нанесение нескольких слоев разнородных покрытий различных (заданных) толщин каждого из слоев.

ХГН обеспечивает получение покрытий высокого качества при использовании относительно легкоплавких материалов (Zn, Al, сплавы карбидов с металлами с большой долей металлической матрицы), что не позволяет использовать ХГН для защиты от износа в условиях эрозии, агрессивных сред при высоких температурах.

Оборудование

Конструкция оборудования обеспечивает создание воздушного сверхзвукового потока, введение в этот поток частиц напыляемого порошкового материала и ускорение этих частиц до скоростей, достаточных для эффективного формирования металлических покрытий с высокими эксплуатационными характеристиками.

К настоящему времени выпускается несколько модификаций оборудования для ручного или автоматизированного нанесения покрытий. Производителем промышленного оборудования для газодинамического напыления является «Обнинский центр порошкового напыления» (Россия).

Оборудованию присвоен товарный знак ДИМЕТ®, оно сертифицировано по системе ГОСТ Р и защищено патентами России, США, Канады и других стран. Для работы оборудования необходим сжатый воздух давлением 0,6-1,0 МПа и расходом 0,3-0,4 м3/мин., и электросеть напряжением 220 В.

На базе этого оборудования выпускаются специализированные комплексы для восстановления радиальных зазоров осевых компрессоров газоперекачивающих аппаратов, и комплексы для нанесения покрытий на малоразмерные плоские изделия.

Преимущества и недостатки газодинамического метода

По сравнению с термическими способами, газодинамический метод обладает рядом преимуществ:

  • Покрытие наносится в воздушной атмосфере при нормальном давлении, при любых значениях температуры и влажности атмосферного воздуха;
  • При нанесении покрытий оказывается незначительное тепловое воздействие на покрываемое изделие (изделие в зоне нанесения покрытия не нагревается выше 100-150 °С), что исключает возникновение внутренних напряжений в изделиях и их деформацию, а также окисление материалов покрытия и детали;
  • Технология нанесения покрытий экологически безопасна (отсутствуют высокие температуры, опасные газы и излучения, нет химически агрессивных отходов, требующих специальной нейтрализации);
  • При воздействии высокоскоростного потока напыляемых частиц происходит очистка поверхности от технических загрязнений, масел, красок и активация кристаллической решетки материала изделия;
  • Поток напыляемых частиц является узконаправленным и имеет небольшое поперечное сечение. Это позволяет, в отличие от традиционных газотермических методов напыления, наносить покрытия на локальные (с четкими границами) участки поверхности изделий;
  • Возможно нанесение многокомпонентных покрытий с переменным содержанием компонентов по его толщине;
  • Возможно нанесение различных типов покрытий с помощью одной установки;
  • Возможно использование оборудования не только в стационарных, но и в полевых условиях.

Единственным недостатком газодинамического напыления является возможность нанесения покрытий только из относительно пластичных металлов, таких как медь, алюминий, цинк, никель и др.

Область применения 

Ремонт дефектов деталей из легких сплавов
Устранение повреждений деталей из легких сплавов, прежде всего алюминиевых или алюминиевомагниевых сплавов, возникающих как в процессе их производства, так и в процессе эксплуатации, является наиболее эффективным направлением применения этой технологии.

Важно подчеркнуть, что низкая энергетика процесса позволяет устранять дефекты и повреждения даже тонкостенных деталей, восстановление которых другими способами оказывается просто невозможным.

Причина этого – отсутствие нагрева обрабатываемой детали (деталь не нагревается выше 100-150°С), а следовательно, и отсутствие окисления напыляемого материала и подложки, отсутствие тепловых деформаций изделия и внутренних напряжений.

Ремонт отливок
В производстве отливок из легких сплавов технология применяется для устранения дефектов литья (свищи, каверны, раковины) в тех случаях, когда они не влияют на прочностные характеристики изделия, но нарушают их герметичность, требуемые геометрические параметры или товарный вид. Экономическая эффективность ремонта возрастает, если дефекты являются скрытыми и обнаруживаются только на этапе механической обработки.

Устранение механических повреждений
Повреждения деталей, сопровождающиеся изменением геометрических размеров, возникают как в процессе производства, так и в процессе эксплуатации деталей в составе механизмов. Эти повреждения, связанные с уносом массы металла – коррозионные повреждения, износ, сколы, прогары, трещины, пробоины и др.

Технология газодинамического напыления используется для устранения таких повреждений при выполнении ремонтно-восстановительных работ автотракторной, авиационной, железнодорожной, военной техники, сельскохозяйственных машин, технологического оборудования и т.п. Отдельным направлением применения технологии является восстановление геометрических размеров деталей и узлов газоперекачивающих аппаратов магистральных газопроводов.

Восстановление посадочных мест подшипников
Восстановление посадочных мест подшипников позволяет облегчить традиционную технологию ремонта и ее трудоемкость.

Покрытия наносятся непосредственно на изношенную поверхность; процесс «наращивания» металла унифицируется в силу того, что покрытия могут наноситься на любые металлы, из которых могут быть изготовлены подшипниковые щиты.

Герметизация течей жидкостей и газов
Технология позволяет устранять течи рабочих газов и жидкостей в случаях, когда невозможно использование герметиков: для ремонта сосудов, работающих под давлением или при низких и высоких температурах (элементов криогенных систем, систем охлаждения, трубопроводов, теплообменников и т.п.).

Нанесение электропроводящих покрытий
Технологическая простота нанесения покрытий на любую металлическую, керамическую и стеклянную основу обуславливает их применение в производстве различных электротехнических изделий.

Технология используется для создания контактных площадок заземления корпусов различного электротехнического оборудования, меднения токопроводящих шин печей-электролизеров в производстве алюминия, соединительной арматуры силовых токонесущих цепей, нанесения токовводов на стеклянные и керамические изделиях, изготовления подслоев под пайку керамических изоляторов.

Антифрикционные покрытия
Весьма эффективным оказывается применение новой технологии для устранения локальных повреждений (сколов, царапин, задиров и т.п.) поверхностей скольжения путем нанесения покрытий на дефектные места. Использование этого способа позволяет продлить ресурс подшипника и избежать сложной процедуры полной его перезаливки или замены.

Антикоррозионные покрытия
Пленки из алюминия и цинка защищают поверхности от коррозии лучше, чем лакокрасочные и многие другие металлические покрытия.

Важно

С помощью напыления цинка или алюминия удается приостановить коррозию в местах появления «жучков» на крашеных поверхностях кузовов автомобилей.

Также возможно нанесение антикоррозионных алюминиевых, цинковых и алюмоцинковых покрытий на внешнюю и внутреннюю поверхность труб диаметром от 100 мм и более, длиной до 12 м.

Кроме упомянутых выше направлений, эффективно применение газодинамической технологии и оборудования и для обеспечения защиты от высокотемпературной коррозии, предотвращения «схватывания» в силовых резьбовых соединениях, герметизации теплообменников и хладоагрегатов, корпусов электрооборудования, создания светоотражающих технических и декоративных изделий.

Tweet <\p>

Источник: https://www.metalika.ua/articles/gazodinamicheskoe-napylenie-poroshkovykh-materialov.html

Технологии нанесения защитных покрытий

Газотермические покрытия применяют при ремонте оборудования и упрочнении рабочих поверхностей новых деталей.

Основные технологические процессы, которые сегодня используются в газотермическом напылении — это высокоскоростное напыление, плазменное напыление на воздухе с использованием таких плазмообразующих газов, как аргон, азот, гелий, воздух, детонационное и газопламенное напыление, а также электродуговая металлизация и наплавка.

Газотермическое напыление

Преимущества газотермического напыления

Высокоскоростное (HVOF, HVAF) напыление

Преимущества высокоскоростного (HVOF, HVAF) напыления

Плазменное напыление

Преимущества плазменного напыления

Газопламенное напыление

Преимущества газопламенного напыления

Электродуговая металлизация

Процесс образования металлизационного покрытия

Преимущества электродуговой металлизации

Газотермическое напыление:

Применение технологий нанесения защитных покрытий с помощью газотермического напыления является одним из кардинальных путей решения данного вопроса.

С использованием существующих в настоящее время оборудования, материалов и технологий газотермического напыления стало возможным значительно снизить или исключить влияние на изнашивание деталей таких факторов, как эрозия, коррозия (в том числе высокотемпературная), кавитация и др.

Защитные покрытия могут быть также предназначены, например, для создания термобарьерного слоя, обеспечения электроизоляционных свойств, поглощения излучения продуктов радиоактивного распада, обеспечения определенных оптических свойств, реализации селективного смачивания, создания биологически активных поверхностных свойств для различных искусственных органов и многого другого.

Газотермические покрытия применяют при ремонте оборудования и упрочнении рабочих поверхностей новых деталей. В зависимости от назначения покрытия и условий его работы меняются требования к точности соблюдения основных параметров покрытия — его состава, толщины, плотности и прочности сцепления с подложкой.

Освоение техники газотермического напыления решает экологические проблемы, вытесняя гальванические «грязные» технологии.

Основные технологические процессы, которые сегодня используются в газотермическом напылении — это высокоскоростное напыление, плазменное напыление на воздухе с использованием таких плазмообразующих газов, как аргон, азот, гелий, воздух, детонационное и газопламенное напыление, а также электродуговая металлизация и наплавка.

Преимущества газотермического напыления:

защитные покрытия можно наносить на объекты любых размеров: мосты, суда, трубопроводы, строительные конструкции, котлы, коленчатые валы, лопатки турбин и др.,

– толщина покрытия может составлять от 0,01 до 10 и более мм;

– покрытия могут иметь заданную пористость (от 0 до 30 и более процентов),

– защитные покрытия могут быть изготовлены из любых материалов, имеющих точку плавления или интервал размягчения,

в качестве подложки можно использовать дерево, стекло, пластмассы, керамику, композиционные материалы, металлы,

– нанесение защитных покрытий может производиться в широком диапазоне состава покрытия, температуры и давления – в низком вакууме в специальной камере с контролируемой инертной атмосферой, в воздухе при нормальных условиях, под водой,

Читайте также:  Стеклотканевые обои под покраску: помощь в выборе (+25 фото)

нанесение металлических и керамических покрытий не вызывает значительного нагрева напыляемой поверхности, следовательно, обеспечивается сохранение геометрических размеров деталей.

В основе высокоскоростного газопламенного напыления лежит нагрев частиц с одновременным их ускорением и нанесением на обрабатываемую поверхность на сверхзвуковых скоростях. В качестве напыляемых материалов используются различные металлокерамические и металлические порошки и проволоки. Поскольку при таком нанесении частицы не проплавляются, метод относится к холодным технологиям.

При газопламенном высокоскоростном проволочном напылении в покрытии содержится меньше оксидов, чем при высокоскоростном порошковом напылении.

Это имеет особо важное значение для получения плотных коррозионно–стойких покрытий.

Однако относительно малая скорость частиц при высокоскоростном газопламенном напылении не обеспечивает плотного формирования покрытий. Поверхность частиц успевает окислиться.

Преимущества высокоскоростного (HVOF, HVAF) напыления:

– образующиеся в процессе твердосплавные покрытия по всем характеристикам превосходят гальванические,

– образуется надежное, долговечное покрытие, обладающее отличными эксплуатационными свойствами,

– устойчивость к коррозии, истиранию, ударам и другим внешним воздействиям,

– увеличение срока службы изделий на десятки лет,

– стоимость такого защитного покрытия гораздо меньше, чем аналогичного гальванического.

Плазменное напыление:

При плазменном напылении в качестве плазмообразующего газа используется аргон, вторичный же – гелий, водород или азот. При попадании в плазменную дугу, порошковый материал расплавляется и переносится на обрабатываемую поверхность. Там происходит его кристаллизация. Для данного вида обработки используются керамика и металлические сплавы.

В настоящее время плазмотроны большой мощности спроектированы с подачей порошка в плазменную струю. Такая схема не влияет на дугу. Плазмотроны имеют завышенную мощность, чтобы тепла плазменной струи хватило на нагрев порошка. Нанесение осуществляется методом металлизации.

Преимущества плазменного напыления:

– защита металлоконструкций от коррозии в пресной и морской воде,

– защита металлоконструкций от коррозии в высокоагрессивных средах,

– сокращение простоев оборудования на ремонт и технического обслуживания,

– уменьшение издержек,

– увеличение прибыли предприятия.

Газопламенное напыление:

Метод заключается в распылении проволоки в потоке сгорающего в кислороде газа. Для этих целей обычно применяется пропан или ацетилен.

В этом случае, расплавленный металл переносится на поверхность, где уже происходит кристаллизация и формирование защитного слоя.

Для напыления может использоваться любая проволока диаметром от 3 до 3,17 мм. Данный метод газотермического покрытия относится к горячим.

Преимущества газопламенного напыления:

– восстановление геометрии деталей,

– возможность производить шейки валов, крышки защищенных электродвигателей, баббитовые подшипники, посадочные места,

– выполнение антикоррозионной обработки металлоконструкций.

Электродуговая металлизация:

Электродуговое металлизационное напыление (Twin–wire arc spray) – нагрев проволок до плавления электрической дугой и последующее сдутие образовавшихся капель в сторону подложки. Как правило, осуществляется в несколько проходов. Чаще всего для напыления применяют цинк, алюминий или монель. Возможная пористость покрытий – менее 2%.

Процесс образования металлизационного покрытия:

Преимущества электродуговой металлизации:

– защищита поверхности от негативных воздействий агрессивных сред и атмосферных осадков,

– увеличение срока службы,

– обеспечение высокой твердости и адгезии за счет протекторных свойств,

– нанесение таких покрытий можно осуществлять в полевых условиях.

РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ ТЕХНОЛОГИЙ

ЗВОНИТЕ: +7-908-918-03-57

либо воспользуйтесь поиском аналогов технологий:

ПОИСК АНАЛОГОВ ТЕХНОЛОГИЙ

или пиши нам здесь…

карта сайта

Войти    Регистрация

Andrey-245

Не совсем понятно. Эту батарейку можно вообще не заряжать что ли? Сколько вольт она выдает? И где ее купить? И можно ли такие соединить последовательно-параллельно, собрав нормальный аккумулятор, например, для электромобиля?

2018-08-23 10:09:48Виктор Потехин 2018-08-24 08:33:25SergeyShef

Добрый день! Интересна вышеописанная установка. Как можно её заказать ? Какие условия сотрудничества у автора?

2018-08-27 17:07:42Виктор Потехин

Сергей, кидайте сюда ссылку на установку. Или пишите мне vnp1@ya.ru

2018-08-27 18:52:14SergeyShef

Я у Вас спрашивал, как и где её можно купить?

2018-08-27 21:07:41SergeyShef

Кто изготовил тот образец, который у Вас на фото и могут ли изготавливать на заказ?

2018-08-27 21:10:05Виктор Потехин

не могу понять, что за установка. скиньте сюда ссылку

2018-08-27 23:15:16Виктор Потехин

не обладаем такой информацией

2018-08-28 21:45:17npc-ses

Совет

Добрый день! SergeyShef изделие подобное тому, что изображено в заголовке, да и в принципе любое изделие по технологии LTCC можно изготовить на нашем производстве АО «НПЦ «СпецЭлектронСистемы». Находимся в г. Москва. Можете написать мне на электронную почту vag_av@npc-ses.ru

2018-08-29 18:41:34npc-ses

На нашем производстве имеется пожалуй самый полный комплект оборудования в России, который позволяет производить 3D микросборки, в том числе по технологии LTCC, в замкнутом цикле, начиная от входного контроля материалов, всех промежуточных производственных процессов…

2018-08-29 18:47:20Djahan

КРИОГЕЛЬ ДЛЯ РОСТА И РАЗВИТИЯ РАСТЕНИЙ В НЕБЛАГОПРИЯТНЫХ УСЛОВИЯХ. кто производит, как найти, чтобы купить?

2018-08-30 23:48:23Виктор Потехин

купить можно у производителя

2018-09-01 20:58:09Andrey-245

Здравствуйте, Виктор. Я задавал вопрос (2018-08-23) имелось в виду про углеродную батарейку, которая служит более 100 лет.

2018-09-18 12:15:33Виктор Потехин

вся информация, что есть по батарейке, написана в соответствующей статье.

Источник: http://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/tehnologii-naneseniya-zashhitnih-pokryitiy/

Рефераты, дипломные, курсовые работы — бесплатно: Библиофонд!

Кандидаты физико-математических наук О. Клюев и А. Каширин.

Когда только появились первые металлические орудия труда, выяснилось, что, твердые и прочные, они сплошь и рядом портились под воздействием влаги. Шло время, люди создавали механизмы и машины, и чем более совершенными они становились, тем в более тяжелых условиях приходилось работать их металлическим деталям.

Вибрации и знакопеременные нагрузки, огромные температуры, радиоактивное облучение, агрессивные химические среды — вот далеко не полный перечень «испытаний», которым они подвергаются. Cо временем люди научились защищать металл от коррозии, износа и других явлений, которые сокращают срок службы деталей.

По сути, есть два подхода к обеспечению такой защиты: либо в основной металл добавляют легирующие элементы, которые придают сплаву искомые свойства, либо на поверхность наносят защитное покрытие. Условия работы деталей машин диктуют свойства, которыми должны обладать покрытия.

Технологии их нанесения разнообразны: есть распространенные и относительно несложные, есть очень тонкие, позволяющие создавать покрытия с уникальными свойствами. А неугомонные инженеры продолжают изобретать все новые покрытия и придумывать способы их получения.

Судьба этих изобретений может стать счастливой, если покрытие намного превосходит своих предшественников по полезным свойствам или если технология дает существенный экономический эффект. В разработке физиков из Обнинска соединились оба этих условия.

Температура плюс скорость

Из способов металлизации поверхностей в современной технике чаще всего пользуются гальваническим нанесением и погружением в расплав. Реже используют вакуумное напыление, осаждение из паровой фазы и пр. Ближе всего к разработке обнинских физиков находится газотермическая металлизация, когда наносимый металл плавят, распыляют на мельчайшие капли и струей газа переносят их на подложку.

Металл плавят газовыми горелками, электрической дугой, низкотемпературной плазмой, индукторами и даже взрывчатыми веществами. Соответственно методы металлизации называют газопламенным напылением, электродуговой и высокочастотной металлизацией, плазменным и детонационно-газовым напылением.

В процессе газопламенного напыления металлический пруток, проволоку или порошок плавят и распыляют в пламени горелки, работающей на смеси кислорода с горючим газом. При электродуговой металлизации материал плавится электрической дугой.

Обратите внимание

В обоих случаях капельки металла перемещаются к напыляемой подложке потоком воздуха. При плазменном напылении для нагрева и распыления материала используется струя плазмы, формируемая плазматронами разных конструкций.

Детонационно-газовое напыление происходит в результате взрыва, разгоняющего металлические частицы до огромных скоростей.

Во всех случаях частицы напыляемого материала получают два вида энергии: тепловую — от источника нагрева и кинетическую — от газового потока. Оба этих вида энергии участвуют в формировании покрытия и определяют его свойства и структуру.

Кинетическая энергия частиц (за исключением детонационно-газового метода) невелика по сравнению с тепловой, и характер их соединения с подложкой и между собой определяется термическими процессами: плавлением, кристаллизацией, диффузией, фазовыми превращениями и т.д.

Покрытия обычно характеризуются хорошей прочностью сцепления с подложкой (адгезией) и, к сожалению, низкой однородностью, поскольку велик разброс параметров по сечению потока газа.

Покрытиям, которые создают газотермическими методами, присущ ряд недостатков. К ним относятся, прежде всего, высокая пористость, если, разумеется, не стоит цель специально сделать покрытие пористым, как в некоторых деталях радиоламп.

Кроме того, из-за быстрого охлаждения металла на поверхности подложки в покрытии возникают высокие внутренние напряжения. Обрабатываемая деталь неизбежно нагревается, и если она имеет сложную форму, то ее может «повести».

Наконец, использование горючих газов и высокие температуры в рабочей зоне усложняют меры по обеспечению безопасности персонала.

Несколько особняком стоит детонационно- газовый метод. При взрыве скорость частиц достигает 1000-2000 м/с. Поэтому основным фактором, определяющим качество покрытия, становится их кинетическая энергия. Покрытия отличаются высокой адгезией и низкой пористостью, но взрывными процессами крайне сложно управлять, и стабильность результато в гарантиро вать практически невозможно.

Скорость плюс температура

Желание создать более совершенную технологию возникло давно. Перед инженерами стояла цель — сохранить достоинства традиционных технологий и избавиться от их недостатков.

Направление поиска было более или менее очевидно: во-первых, покрытия должны формироваться в основном за счет кинетической энергии частиц металла (нельзя допускать плавления частиц: это предотвратит разогрев детали и окисление подложки и частиц покрытия), и, во-вторых, частицы должны приобретать высокую скорость не за счет энергии взрыва, как в детонационно-газовом методе, а в струе сжатого газа. Такой метод назвали газодинамическим.

Первые расчеты и эксперименты показали, что создавать таким способом покрытия, обладающие вполне удовлетворительными характеристиками, можно, если использовать в качестве рабочего газа гелий. Такой выбор объяснялся тем, что скорость потока газа в сверхзвуковом соплепропорциональна скорости звука в соответствующем газе.

Важно

В легких газах (водород из-за своей взрывоопасности не рассматривался) скорость звука гораздо выше, чем в азоте или воздухе. Именно гелий ускорял бы металлические частицы до высоких скоростей, сообщая им кинетическую энергию, достаточную для закрепления на мишени.

Считалось, что использование более тяжелых газов, в том числе воздуха, обречено на неудачу.

Работа опытных напылительных установок дала неплохой результат: разогнавшиеся в струе гелия частицы из большинства промышленно применяемых металлов хорошо прилипали к подложке, образуя плотные покрытия.

Но полного удовлетворения инженеры не испытывали. Было понятно, что оборудование на легких газах неизбежно будет дорогим и сможет применяться лишь на предприятиях, выпускающих продукцию высоких технологий (только там есть магистрали со сжатым гелием). А магистрали со сжатым воздухом имеются практически в каждом цеху, на каждом предприятии автосервиса, в ремонтных мастерских.

Читайте также:  Чистка посуды содой и канцелярским клеем: основные способы

Многочисленные эксперименты со сжатым воздухом вроде бы подтверждали худшие ожидания разработчиков. Однако интенсивный поиск все же позволил найти решение. Покрытия удовлетворительного качества получились, когда сжатый воздух в камере перед соплом нагрели, а в металлический порошок стали добавлять мелкодисперсную керамику или порошок твердого металла.

Дело в том, что при нагревании давление воздуха в камере в соответствии с законом Шарля повышается, а следовательно, повышается и скорость истечения из сопла.

Частицы металла, набравшие в струе газа огромную скорость, при ударе о подложку размягчаются и привариваются к ней.

Совет

Частицы керамики играют роль микроскопических кувалд — они передают свою кинетическую энергию нижележащим слоям, уплотняют их, снижая пористость покрытия.

Некоторые керамические частицы застревают в покрытии, другие отскакивают от него. Правда, таким способом получают покрытия только из относительно пластичных металлов — меди, алюминия, цинка, никеля и др. Впоследствии деталь можно подвергать всем известным способам механической обработки: сверлить, фрезеровать, точить, шлифовать, полировать.

Главное условие — простота и надежность

Старания технологов останутся втуне, если конструкторы не смогут создать простое, надежное и экономичное оборудование, в котором был бы реализован придуманный технологами процесс. Основой аппарата для напыления металлических порошков стали сверхзвуковое сопло и малогабаритный электрический нагреватель сжатого воздуха, способный доводить температуру потока до 500-600oС.

Использование в качестве рабочего газа обычного воздуха позволило попутно решить еще одну проблему, которая стояла перед разработчиками систем на легких газах. Речь идет о введении напыляемого порошка в газовую струю.

Чтобы сохранить герметичность, питатели приходилось устанавливать до критического сечения сопла, то есть порошок необходимо было подавать в область высокого давления.

Чисто технические трудности усугублялись тем, что, проходя через критическое сечение, металлические частицы вызывали износ сопла, ухудшали его аэродинамические характеристики, не позволяли стабилизировать режимы нанесения покрытий.

В конструкции аппарата с воздушной струей инженеры применили принцип пульверизатора, известный каждому еще из школьных опытов по физике. Когда газ проходит по каналу переменного сечения, то в узком месте его скорость увеличивается, а статическое давление падает и может даже быть ниже атмосферного. Канал, по которому порошок поступал из питателя, расположили как раз в таком месте, и порошок перемещался в сопло за счет подсоса воздуха.

В результате на свет появился переносной аппарат для нанесения металлических покрытий. Он имеет ряд достоинств, которые делают его очень полезным в различных отраслях промышленности:

для работы аппарата нужны всего лишь электросеть и воздушная магистраль или компрессор, обеспечивающий давление сжатого воздуха 5-6 атм и подачу 0,5 м3/мин;

при нанесении покрытий температура подложки не превышает 150оС;

покрытия обладают высокой адгезией (40-100 Н/мм2) и низкой пористостью (1-3%);

оборудование не выделяет вредных веществ и излучений;

габариты устройства позволяют использовать его не только в цеху, но и в полевых условиях;

можно напылять покрытия практически любой толщины.

Обратите внимание

В состав установки входят собственно напылитель массой 1,3 кг, который оператор держит в руке или закрепляет в манипуляторе, нагреватель воздуха, порошковые питатели, блок контроля и управления работой напылителя и питателя. Все это смонтировано на стойке.

Пришлось потрудиться и над созданием расходных материалов. Выпускаемые промышленностью порошки имеют слишком большие размеры частиц (порядка 100 мкм). Разработана технология, которая позволяет получать порошки с зернами размером 20-50 мкм.

От космических аппаратов до сеялок

Новый способ напыления металлических покрытий может применяться в самых различных отраслях промышленности.

Особенно эффективен он при ремонтных работах, когда необходимо восстановить участки изделий, например, заделать трещину или раковину.

Благодаря невысоким температурам процесса легко восстанавливать тонкостенные изделия, отремонтировать которые другим способом, например наплавкой, невозможно.

Поскольку зона напыления имеет четкие границы, напыляемый металл не попадает на бездефектные участки, а это очень важно при ремонте деталей сложной формы, например корпусов коробок передач, блоков цилиндров двигателей и др.

Устройства для напыления уже применяют в авиакосмической и электротехнической промышленности, на объектах атомной энергетики и в сельском хозяйстве, на авторемонтных предприятиях и в литейном производстве.

Метод может оказаться весьма полезным во многих случаях. Вот лишь некоторые из них.

Восстановление изношенных или поврежденных участков поверхностей.

С помощью напыления восстанавливают поврежденные в процессе эксплуатации детали редукторов, насосов, компрессоров, форм для литья по выплавляемым моделям, пресс-форм для изготовления пластиковой упаковки.

Важно

Новый метод стал большим подспорьем для работников авторемонтных предприятий. Теперь буквально «на коленках» они заделывают трещины в блоках цилиндров, глушителях и пр. Без особых проблем устраняют дефекты (каверны, свищи) в алюминиевом литье.

Устранение течей. Низкая газопроницаемость покрытий позволяет ликвидировать течи в трубопроводах и сосудах, когда нельзя использовать герметизирующие компаунды. Технология пригодна для ремонта емкостей, работающих под давлением или при высоких и низких температурах: теплообменников, радиаторов автомобилей, кондиционеров.

Нанесение электропроводящих покрытий. Напылением удается наносить медные и алюминиевые пленки на металлическую или керамическую поверхность. В частности, метод экономически более эффективен, чем традиционные способы, при меднении токоведущих шин, цинковании контактных площадок на элементах заземления и т. п.

Антикоррозионная защита. Пленки из алюминия и цинка защищают поверхности от коррозии лучше, чем лакокрасочные и многие другие металлические покрытия.

Невысокая производительность установки не позволяет обрабатывать большие поверхности, а вот защищать такие уязвимые элементы, как сварные швы, очень удобно.

С помощью напыления цинка или алюминия удается приостановить коррозию в местах появления «жучков» на крашеных поверхностях кузовов автомобилей.

Восстановление подшипников скольжения. В подшипниках скольжения обычно применяют баббитовые вкладыши. С течением времени они изнашиваются, зазор между валом и втулкой увеличивается и слой смазки нарушается. Традиционная технология ремонта требует либо замены вкладыша, либо заварки дефектов. А напыление позволяет восстановить вкладыши.

В этом случае для уплотнения слоя напыляемого металла керамику применять нельзя. Твердые включения через считанные минуты после начала работы выведут подшипник из строя, причем поврежденными окажутся поверхности и втулки и вала. Пришлось применить сопло особой конструкции.

Совет

Оно позволяет наносить покрытие из чистого баббита в так называемом термокинетическом режиме. Частицы порошка сразу за критическим сечением сопла разгоняются сверхзвуковым потоком воздуха, затем скорость потока резко снижается до околозвуковой. В результате резко возрастает температура, и частицы нагреваются почти до температуры плавления.

При попадании на поверхность они деформируются, частично плавятся и хорошо прилипают к ниже лежащему слою.

Список литературы

Каширин А. И., Клюев О. Ф., Буздыгар Т. В. Устройство для газодинамического нанесения покрытий из порошковых материалов. Патент РФ на изобретение № 2100474. 1996, МКИ6 С 23 С 4/00, опубл. 27.12.97. Бюл.№ 36.

Источник: https://www.BiblioFond.ru/view.aspx?id=94228

Напыление металлом

Технология нанесения металлов на поверхность деталей и изделий использует газодинамический метод нанесения покрытий.

Метод разработан на основе эффекта закрепления твердых частиц, движущихся со сверхзвуковой скоростью, на поверхности при соударении с ней.

Технология является новой и ранее в промышленности не использовалось.

Достоинства

Газодинамический метод нанесения металлических покрытий обладает рядом преимуществ по сравнению с традиционными методами. Эти преимущества состоят в следующем:

  • покрытие наносится в воздушной атмосфере при нормальном давлении, при любых значениях температуры и влажности атмосферного воздуха;
  • при нанесении покрытий оказывается незначительное тепловое воздействие на покрываемое изделие;
  • технология нанесения покрытий экологически безопасна (отсутствуют высокие температуры, опасные газы и излучения, нет химически агрессивных отходов, требующих специальной нейтрализации);
  • не требуется подогрев покрываемого изделия;
  • при отсутствии на подложках пластовой ржавчины или окалины на металлическом изделии не требуется тщательной подготовки поверхности (при воздействии высокоскоростного потока частиц происходит очистка поверхности от технических загрязнений, масел, красок и активация кристаллической решетки материала изделия);
  • поток напыляемых частиц является узконаправленным и имеет небольшое поперечное сечение. это позволяет, в отличие от традиционных газотермических методов напыления, наносить покрытия на локальные (с четкими границами) участки поверхности изделий;
  • возможно нанесение многокомпонентных покрытий с переменным содержанием компонентов по его толщине;
  • возможно нанесение различных типов покрытий с помощью одной установки;
  • возможно использование оборудования в полевых условиях.

Широкий спектр областей применения и высокие эксплуатационные качества различных покрытий были неоднократно подтверждены в условиях практической эксплуатации покрытий. Некоторые из задач по нанесению покрытий, которые решаются с помощью нашего оборудования, являются уникальными. Решение таких задач другими способами и с применением другого оборудования оказывается практически невозможным.

Восстановление утраченных объемов металла

Данные технологии и оборудование являются весьма эффективными для восстановления дефектных участков самых разнообразных деталей и изделий.

В большой степени это обусловлено тем, что из-за низкого тепловложения устранение дефекта не приводит к деформации изделия, возникновению внутренних напряжений, структурных превращений металла изделия.

При этом конструкция оборудования обеспечивает локализованное воздействие на обрабатываемую деталь, не затрагивающее бездефектные участки. Однако эта технология пригодна только в тех случаях, когда не предъявляется высоких требований по твердости и износостойкости наносимых покрытий.

Устранение дефектов (трещин, каверн, свищей) силуминового, чугунного и стального литья в производстве.

Устранение повреждений деталей и агрегатов в авторемонте.

Устранение повреждений деталей, узлов и агрегатов машин и механизмов (восстановление механических повреждений силуминовых деталей, посадочных мест подшипников, корпусов насосов и т.п.)

Устранение дефектов литьевых форм для литья по выплавляемым моделям, алюминиевых пресс-форм для изготовления пластиковой упаковки, пресс-форм резинотехнических изделий.

Задиры на поворотной рейке кран-манипулятора

Подготовка поверхности к абразивной обработке

Абразивная обработка специальным составом

Напыление установкой

Вид с близкого расстояния

Шлифовка на специальном оборудовании

Рейка готова к дальнейшей эксплуатации

То, что видно глазу, никак не ощущается руками. Поверхность приобретает все утраченные свойства. Дается гарантия на обработку 6 месяцев.

Источник: http://s-gidro-s.ru/services/napylenie-metallom/

Напыление металлов: способы, технология, оборудование

Бизнес 24 июля 2016

В строительных и производственных сферах все чаще применяются высокопрочные пластики. Они превосходят традиционные твердые материалы за счет своей небольшой массы, податливости в обработке и практичности.

И все же металл сохраняется во многих отраслях как наиболее выгодный материал с точки зрения сочетания прочности, жесткости и долговечности. При этом далеко не всегда оправдывает себя использование цельной структуры.

Читайте также:  Затирка для плитки в ванной: виды, особенности выбора, лучшие производители

Все чаще технологи применяют напыление металлов, которое позволяет наделить рабочую заготовку частью свойств наиболее подходящего в плане эксплуатации сплава.

Общие сведения о технологиях металлизации

Среди современных методов металлизации поверхностей чаще применяют гальваническое нанесение, а также погружение в расплавы.

Традиционная технология также предусматривает вакуумную обработку напылением, которая имеет свои классификации в зависимости от используемых активных сред.

Так или иначе, любое напыление металлов предусматривает обработку основы материала с целью получения тех или иных защитных качеств. Это может быть формирование антикоррозийного слоя, восстановление утраченной структуры или же ремонт эксплуатационного износа.

При этом сама рабочая поверхность в большинстве случаев подвергается термической обработке. Перед нанесением металлических частиц она расплавляется горелками, индукторами или посредством воздействия низкотемпературной плазмы.

Таким образом подготавливается основа с оптимальными физико-химическими качествами, на которой в дальнейшем производится напыление металлов в виде порошка.

Важно отметить, что в качестве основного материала может выступать тот же металл, стекло, пластики или некоторые породы древесины и камни.

Метод химического хромирования

В качестве активного компонента для реализации такого напыления используют химические реагенты. Классический состав включает хлористый хром, натрий, уксусную кислоту, а также воду с раствором едкого натра. Процесс напыления выполняется при температуре порядка 80 °С. Начинается работа с подготовки материала.

Обычно хромирование используют для обработки металлических поверхностей, в частности стали. Перед самой операцией материал подвергается первичному покрытию медным слоем. Далее производится химическое хромирование посредством пескоструйного аппарата, подключенного к компрессорной установке.

После завершения процедуры изделие моется в чистой воде и просушивается.

Видео по теме

Метод газопламенной обработки

Если в предыдущей технологии предусматривается тщательная подготовка основы, которая должна подвергаться покрытию, то в данном случае особое внимание уделяется частицам металлизации.

Современное газопламенное напыление может выполняться с помощью полимерного порошка, проволочного или шнурового материала.

Данная масса направляется в пламя кислородно-пропановой или ацетиленокислородной горелки, в которой происходит расплавление и перенос на напыляемую основу сжатым воздухом. Далее состав остывает, формируя готовое к применению покрытие.

Обратите внимание

При помощи данной методики можно наделять материалы антикоррозийной стойкостью и механической прочностью. Активным материалом можно обрабатывать алюминиевые, никелевые, цинковые, железные и медные сплавы.

В частности, газопламенное напыление используют для повышения эксплуатационных качеств подшипников скольжения, изоляционных покрытий, электротехнических деталей и т. д.

Кроме этого, технология используется в интерьерном и архитектурном дизайне для обеспечения конструкций декоративными свойствами.

Метод вакуумного напыления

В этом случае речь идет о группе методов, которые предполагают формирование тонких пленок в вакууме при воздействии прямой конденсации пара. Технология реализуется разными путями, в том числе за счет термического воздействия, испарения электронными и лазерными лучами.

Используется вакуумное напыление для повышения технических качеств деталей, оборудования и инструментов.

К примеру, такая обработка позволяет формировать специальные «рабочие» покрытия, которые могут повышать электропроводность, изолирующие свойства, износостойкость и защиту от коррозии.

Технология применяется и для создания декоративных покрытий. В данном случае техника может задействоваться в операциях, требующих высокой точности. Например, вакуумное напыление используют в изготовлении часов с позолоченным покрытием, для придания эстетичного вида оправам для очков и т. д.

Применяемое оборудование

Чаще всего для напыления используются аппараты, снабженные сверхзвуковым соплом. Также применяется небольшой по размерам электрический нагреватель, работающий на подачу сжатого воздуха.

Особенностью последней модели является возможность доведения температуры до 600 °С. До недавнего времени применение стандартных устройств, напоминающих по принципу действия пневматические пистолеты, осложнялось тем, что частицы изнашивали насадки инструмента.

Важно

Современное оборудование, благодаря которому осуществляется напыление металлов, использует принцип пульверизатора. Это значит, что в момент прохождения рабочей газовой среды по каналу подачи струи скорость потока увеличивается по мере сужения трубы.

Вместе с этим падает и статическое давление. Такой принцип работы сокращает износы и увеличивает рабочий срок аппаратов.

Заключение

В целях удешевления технологических операций по защите металла от внешних воздействий часто используются узкоспециализированные, но менее эффективные средства. При этом сэкономить помогает и напыление металла, цена которого составляет в среднем 8-10 тыс. руб. за деталь.

Финансовая целесообразность обусловлена тем, что такие покрытия могут обеспечивать сразу несколько функциональных качеств. Например, обработав металлический компонент кровельной конструкции, вы можете получить такие свойства, как антикоррозийность, стойкость перед воздействием осадков, механическая защищенность.

Существуют и особые металлизированные покрытия, способные уберечь деталь от агрессивных химических и термических воздействий.

Источник: fb.ru

Источник: https://monateka.com/article/7372/

Вакуумное напыление – принцип работы и технология вакуумного плазменного напыления. Наиболее распространенные методы вакуумного напыления. Ионно вакуумное напыление и принцип его работы. Процесс вакуумного напыления алюминия и его эффективность. Главные особенности вакуумного напыления металла и его отличие от вакуумно ионно плазменного напыления металла. Где можно окупить установку вакуумного напыления по низкой цене

Вакуумное напыление – это процесс, в котором на данном этапе нуждается большая часть современных предприятий. Используется данный метод зачастую на тех производствах, которые занимаются выпуском различной продукции, каким-то образом связанной с дальнейшей эксплуатацией.

Это может быть, как обычное оборудование, так и зубные изделия, которые также нуждаются в процессе вакуумного напыления.

Как бы это странно не звучало, но именно медицинская отрасль является одним из тех направлений, где процесс вакуумного напыления используется чаще всего.

Использовать в данной отрасли, его можно, как в роли улучшения свойств оборудования для работы, так и в роли покрытия различных материалов, либо же изделий.

Установка вакуумного напыления – это одна из наиболее важных составляющих данного процесса. Мало кто будет спорить с тем, что именно установка вакуумного напыления позволяет производить данный процесс, причем делать это довольно быстро. Принцип работы подобных установок максимально прост.

Изначально, внутри подобных систем создается состояние первичного разрежения, которое позволяет превратить кристаллический порошок в специальную смесь, которую можно в дальнейшем наносить на разные покрытия. Далее, внутри установки значительно поднимается уровень давления, что приводи к активному образованию вакуума внутри системы.

Далее, вакуум производит процесс, вспрыскивания напыления, которое сразу же оседает на нужном материале, который и будет поддаваться такой обработке.

Еще один очень важный вопрос – это надежность данного процесса. Судя по конструкции и принципу работы подобных установок, не трудно понять, что сделаны, они максимально продумано. Но нельзя исключать и вероятность поломок подобного оборудования. Но даже такая ситуация не окажется столь сложной, ведь подобное оборудование, является вполне ремонтопригодным и довольно легко поддается починке.

Методы вакуумного напыления

Учитывая тот факт, что современный рынок включает в себя огромное количество разнообразных отраслей, было принято решение, сделать сразу несколько методов вакуумного напыления. Все они уникальны и работают по совершенно разному алгоритму.

Сейчас мы рассмотрим наиболее распространенные методы вакуумного напыления:

  • Вакуумное ионно плазменное напыление
  • Вакуумное плазменное напыление
  • Вакуумное ионное напыление

Это три наиболее часто используемых вида напыления на данный момент. Большая часть предприятий, активно использует данную технологию, получая от нее максимум пользы. А это уже говорит о том, что при желании, от данного метода действительно можно получить максимум пользы.

Вакуумно плазменное напыление

Один из наиболее часто встречающихся методов вакуумного напыления – это вакуумное плазменное напыление. Технология данного процесса максимально проста и заключается она в работе внутренней плазмы. Данный элемент служит в роли некого распределителя, позволяющего сделать процесс напыления максимально качественным.

Кроме этого, подобный метод можно похвастаться еще и точностью нанесения покрытия на изделие. А все потому, что внутри установки подобного типа, заранее создан, установлен код, по которому, подобные системы обычно и работают.

Ионно вакуумное напыление

Данный тип вакуумного напыления, максимально напоминает предыдущий. Наиболее явным отличием данной технологии. Можно назвать предварительный процесс ионизации, позволяющий значительно ускорить рабочий процесс.

Наличие рабочих ионов внутри установки вакуумного напыления, не только улучшает качество рабочего процесса, а и делает его более надежным и что немаловажно, быстрым.

Вакуумное напыление алюминия

Если же говорить о том, какой материал чаще всего поддается процессу вакуумного напыления, то наверняка это алюминий. Причиной этому, послужила сфера применения данного металла, который активно используется практически во всех отраслях.

Но во многих из них, требуется, чтобы данный метод был более прочным и надежным. Именно для этого и созданы установки вакуумного напыления алюминия. Данный процесс, является максимально легким, так как материал очень даже хорошо воздействует со смесью, которая на него наносится, во время вакуумного напыления.

Вакуумное напыление металлов

Если же говорить о процессе вакуумного напыления металла, то это еще более легкий процесс. Технология напыления металла максимально проста, из-за чего ей привыкли пользоваться все предприятия.

Для качественного нанесения слоя напыления на металл, требуется лишь довести его до нужной температуры. Это и есть единственное условие, которого стоит придерживаться во время вакуумного напыления.

Многие считают, что именно это и является главным преимуществом процесса вакуумного напыления металла.

Вакуумное ионно плазменное напыление

Наиболее сложным в плане конструкции и одновременно эффективным, является процесс вакуумного ионно плазменного напыления. Данная технология, включает в себя огромное количество спорных и очень важных моментов, без которых, достичь высокого уровня эффективности уж явно не получится.

С помощью данного метода, можно без проблем производить вакуумное напыление титана, либо же вакуумное напыление стекла. А это уже говорит о том, что многофункциональность данного метода находится на максимально высоком уровне.

Установка вакуумного напыления УВН

Но какой бы вид вакуумного напыления вы не выбрали, не используя при этом установок вакуумного напыления УВН, достичь в этом, каких-либо успехов у вас вряд ли получится. На данном этапе, стоимость подобных установок находится на больно высоком уровне.

Но если говорить об их эффективности, то в этом и вовсе нет никаких сомнений. Купив себе подобный агрегат, вы сможете быть полностью уверены, что со временем, он сможет отбить все вложенные в него деньги.

Источник: http://wiiuclub.ru/vakuumnoe-napylenie/

Ссылка на основную публикацию