Коррозия бетона: виды, причины возникновения и методы защиты

Коррозия бетона

Бетон – это искусственный каменный материал,  состоящий из цемента, песка, воды и щебня.  При затвердевании уплотненной смеси вяжущего вещества (цемент) с заполнителем  образуется бетон. В качестве заполнителя может быть использован щебень, песок, гравий.

Коррозия бетона – процесс разрушения его структуры, охрупчивания под воздействием окружающей среды. Коррозия бетона может быть трех видов.

Виды коррозии бетона:

1. Растворение составных частей цементного камня

Это наиболее распространенный вид коррозионного разрушения бетона. Бетонные изделия эксплуатируются в основном на открытом воздухе. При этом они подвергаются воздействию атмосферных осадков и других жидких сред.

  Составной частью бетона является образовавшийся  гидрат окиси кальция (Са(ОН)2) – гашеная известь.

Это самый легкорастворимый компонент, поэтому со временем он растворяется и постепенно выносится, нарушая при этом структуру бетона.

2. Коррозия бетона при взаимодействии цементного камня с содержащимися в воде кислотами

Под воздействием кислот коррозия бетона протекает либо с увеличением его объема, либо с вымыванием легкорастворимых известковых соединений.

Увеличение объема  происходит по реакции:

Ca(OH)2 + CO2 = CaCO3 + H2O

CaCO3 не растворяется  в воде. Постепенно происходит его отложение в порах цементного камня, за счет чего идет увеличение объема бетона, а  в дальнейшем его растрескивание и разрушение.

При контакте бетона с водными растворами кислот образуется легкорастворимый бикарбонат кальция, который агрессивный для бетона, а при наличии воды растворяется в ней и постепенно вымывается из структуры бетонного камня. Образование бикарбоната кальция описывается реакцией:

CaCO3 + CO2 + H2O = Ca(HCO3)2.

Помимо растворения наблюдается и протекание химической коррозии бетона:

Ca(OH)2 + 2HCl = CaCl2 + 2H2O,

Обратите внимание

при этом вымываются соли хлористого кальция.

Если разрушение бетона происходит под воздействием сульфатов воды – применяют пуццолановый портландцемент, а также  сульфатостойкий портландцемент.

3. Коррозия бетона вследствие образования и кристаллизации в порах труднорастворимых веществ

Кроме вышеописанных коррозионных разрушений бетона при наличии микроорганизмов возможно протекание биокоррозии. Грибки, бактерии и некоторые водоросли могут проникать в поры бетонного камня и там развиваться. В порах откладываются продукты их метаболизма и постепенно разрушают структуру бетонного камня.

При коррозии бетона обычно одновременно протекает несколько видов разрушений.

Коррозия  бетона (железобетонных конструкций) в экстремальных условиях эксплуатации

Экстремальными условиями можно назвать воздействие на  бетонный камень очень низких температур и различных веществ, обладающих повышенной агрессивностью.

Достаточно распространенным случаем коррозии бетона в экстремальных условиях является  разрушение материала  под воздействием сульфатов (химическая коррозия бетона).

В первую очередь, с сульфатами взаимодействуют алюминатные составляющие бетонного камня и гидроксид кальция. Очень нежелательным является взаимодействие алюминатных минералов и сульфатов.

В результате образуется  несколько модификаций гидросульфоалюмината, самым опасным из которых, является эттрингит (3СaO•Al2O3•3CaSO4•32H2O).

Данная соль по мере своего роста (увеличения кристаллов) образует внутри бетона очень высокие напряжения, которые значительно превышают  прочностные характеристики цементного камня. В результате, под воздействием растворов, в состав которых входят сульфаты, коррозионное разрушение бетона протекает очень интенсивно.

При взаимодействии гидроксида кальция с сульфатами образуется CaSO4•2H2O. Со временем вещество  скапливается в поровом пространстве бетона, постепенно его разрушая.

Устойчивость к воздействию сульфатсодержащих сред очень сильно зависит от минералогического состава бетона. Если в цементе содержание минералов на основе алюминия и трехкальциевого силиката ограничено, то он в данной среде более стоек.

Коррозия арматуры в бетоне

Если в конструкциях используют залитую бетоном железную арматуру, т.е. железобетон, возможно протекание еще одного вида разрушения – коррозии арматуры в бетоне.

Под воздействием вод окружающей среды или при наличии в воздухе сероводорода, хлора, сернистых газов  арматура в середине бетона ржавеет и образуются продукты коррозии железа.

Важно

По объему они превышают начальный объем арматуры, что приводит к возникновению и  росту внутренних напряжений, а в дальнейшем – растрескиванию бетона.

Сквозь поры в цементном камне к арматуре проникает воздух и влага. Подвод их к поверхности металла осуществляется не равномерно из-за чего на разных участках поверхности наблюдаются разные потенциалы – протекает электрохимическая коррозия. Скорость протекания электрохимической коррозии арматуры зависит от влагопроницаемости, пористости бетонного камня и наличия в нем трещин.

Наличие в воде растворенных веществ усиливает коррозию арматуры с повышением концентрации электролита.

При длительном выдерживании бетона на воздухе на поверхности образуется очень тонкая (5 – 10 мкм) защитная пленка, которая не растворяется  в воде и не взаимодействует с сульфатами. Процесс возникновения защитной пленки под воздействием углекислоты воздуха называется карбонизацией. Карбонизация защищает бетон от коррозии, но способствует коррозии арматуры в бетоне.

Нельзя  армировать бетон, в состав которого входит хлористый кальций (больше 2% от веса цемента). Хлористый кальций ускоряет коррозию арматуры как на воздухе, так и в воде.

Защита арматуры бетона от коррозии

Существует несколько способов защитить стальную арматуру в бетоне от коррозии: облагородить окружающую металл среду (т.е. использовать качественный бетон специального состава, введение ингибиторов); дополнительная защита арматуры бетона от коррозии (пленки и т.п.); улучшить характеристики самого металла.

Вокруг  арматуры находится сам бетон, поэтому именно бетон является средой, окружающей металл. Для продления срока службы арматуры необходимо улучшить влияние бетонного камня на сталь.

Прежде всего, нужно исключить или, если это невозможно, свести к минимуму вещества, входящие в состав бетона, которые способствуют интенсификации процесса коррозии арматуры в бетоне.

К таким веществам относятся  роданиды, хлориды.

Если железобетонное изделие эксплуатируется в условиях периодического смачивания, необходимо пропитывать бетон специальными пропитками (битумными, петролатумными и др.). Это значительно снизит проницаемость бетона.

При постоянном насыщении бетонного камня коррозия арматуры в бетоне практически сводится к минимуму.

Это объясняется тем, что очень сильно затрудняется проникновение кислорода к поверхности метала,   происходит значительное торможение катодного процесса.

Для продления срока службы металлической основы железобетона – бетон облагораживают. Во время формирования бетонной смеси в состав вводят ингибиторы коррозии.

Совет

Для защиты от коррозии арматуры в конструкционно-теплоизоляционных бетонах широко используется способ омического ограничения.

Суть заключается в том, что влажность самого бетона не должна превышать равновесное значение при относительной влажности воздуха 60%. Тогда процессы коррозии арматуры почти прекращаются, т.к.

возникает высокое омическое сопротивление пленок влаги у поверхности арматуры. Этот способ не так уж  прост и не эффективен  в районах с высокой влажностью и частыми осадками.

Хороший бетон должен обладать первоначальным пассивирующим воздействием на арматуру. Бетонные изделия полностью просыхают примерно за 2-3 года. Если климат сухой, то немного быстрее. Именно в это время и происходит самое сильное коррозионное разрушение арматуры, т.к. она находится во влажной бетонной среде.

Хорошим способом защитить арматуру бетона от коррозии считается предварительное пассивирование поверхности арматуры, а также образование оксидных защитных пленок под воздействием водной щелочной среды бетонного камня. Усиливают защитные свойства пленки введением в бетонную смесь пассиваторов. Часто используют нитрит натрия в количестве 2 – 3 % от исходного веса цемента.

Защита бетона от коррозии

Для защиты  бетона от коррозии  и продления его срока  службы не достаточно применения только одного вида защиты. Чтоб бетон не поддавался вредному влиянию окружающей среды уже на стадии проектирования проводят профилактические мероприятия по его защите.

Эксплуатационно-профилактические мероприятия предусматривают нейтрализацию агрессивных сред, герметизацию, интенсивную вентиляцию  при эксплуатации цементного камня в помещении (для осушки воздуха).

Важную роль в предотвращении бетона от дальнейшего разрушения играет рациональное конструирование.

Обратите внимание

При этом необходимо  придавать бетонной поверхности конструкционной формы, которая будет исключать скопление в углублениях воды и различных органических веществ.

Кроме того важно обеспечить свободный отход жидкости с поверхности. Этого можно достигнуть при использовании водоотводов или формировании  бетонной поверхности под уклоном.

Защиту бетона от коррозии можно разделить на первичную и вторичную.

Первичная защита бетона от коррозии предусматривает при его изготовлении и формировании вводить в состав бетона специальные добавки,  изменяя при этом его минералогический состав.  Этот способ считается наиболее эффективным.

В качестве добавок могут служить различные водоудерживающие, пластифицирующие,  стабилизирующие, химические модификаторы, аморфный кремнезем и др.

Кроме того, ориентируясь на условия эксплуатации цементного камня, при его формировании подбирают оптимальный для данных условий состав. Например, для цементов, эксплуатирующихся в сульфатсодержащих водах уменьшают содержание  С3S.

Часто применяют пуццоланизацию. К портландцементу добавляют кислые гидравлические добавки, которые содержат активный кремнезем.

Са(ОН)2 + SiO2 • nН2О = СаО • SiO2 • (n + 1) Н2О,

Образовавшийся гидросиликат кальция устойчивее чем Са(ОН)2.

Химические добавки могут очень сильно улучшить эксплуатационные свойства бетона. Повысить  его плотность, в результате чего агрессивные агенты в порах замедляют скорость своего передвижения.  Арматура, находясь в плотном бетоне менее подвержена коррозионным разрушениям.

Также при помощи химических добавок можно значительно увеличить количество условно замкнутых пор. В результате морозостойкость цементного камня возрастает в разы.

Самими распространенными химическими  добавками, которые применяются для защиты бетона от разрушений являются: пластифицирующие, противоморозные, уплотняющие, гидрофобизирующие, воздухововлекающие, замедлители схватывания, газообразующие, ингибиторы коррозии арматуры.

Некоторые добавки оказывают двойное действие, т.е. улучшают сразу несколько показателей. Другие же, могут улучшать один, и понижать второй.

Самыми перспективными и распространенными являются следующие добавки.

Важно

Мылонафт. Это пластифицирующая добавка, состоящая из смеси натриевых солей нерастворимых в воде органических кислот. Она способствует повышению однородности бетонной смеси, уменьшая при этом трение между ее отдельными зернами.

Также вовлекает воздух. Производится и поставляется в виде паст. В бетонную смесь необходимо вводить от 0,05 до 0,15 % от массы цемента (в перерасчете на сухое вещество).

Если превысить указанную дозировку, снижается прочность бетона на сжатие.

Мылонафт повышает водонепроницаемость бетонного камня на две марки, морозостойкость – в два раза, устойчивость к воздействию растворов минеральных солей, трещиноустойчивость.

Сульфитно-дрожжевая бражка СДБ. Это химическая добавка пластифицирующего действия. Получают ее путем переработки кальциевых солей лигносульфоновых кислот. Вещество способствует повышению подвижности бетонной смеси, вовлечению в нее воздуха и уменьшению слипания цементных зерен. Производители могут поставлять СДБ в виде твердых или жидких концентратов.

Читайте также:  Золотая краска: виды, формы выпуска и применение (+30 фото)

Для достижения защитного эффекта данной добавки нужно немного больше, чем мылонафта. В перерасчете на сухое вещество цемента, необходимо ввести 0,15 – 0,3% сульфитно-дрожжевой бражки. Она повышает в 1,5 – 2 раза морозостойкость, на 5 – 10% прочность, на одну марку – водонепроницаемость, стойкость к воздействию растворов минеральных солей и трещиностойкость.

Сульфитно-дрожжевая бражка оказывает наилучший эффект при введении ее в бетонный камень на основе высокоалюминатных и быстротвердеющих портландцементов.

Кремнийорганическая жидкость ГКЖ-94. Это гидрофобизирующая и газообразующая добавка, которая образуется в процессе гидролиза этилгидросилоксана. В результате взаимодействия цемента и данной добавки выделяется водород и образуется большое количество замкнутых, равномерно распределенных в бетоне пор.

На капилляры и стенки пор бетона оказывает активное гидрофобизирующее воздействие. На реологические свойства смеси почти не влияет, но очень сильно замедляет процесс затвердевания бетона (начальные стадии). Поставляется в виде 50% водной эмульсии или 100% жидкости.

Вторую вводят в бетонную смесь в количестве 0,03 – 0,08%.

Совет

Способствует повышению водонепроницаемости бетона на две марки, морозостойкости – в три-четыре раза. Кроме того, увеличивает стойкость к переменному увлажнению и высушиванию, воздействию растворов минеральных солей (в условиях капиллярного подсоса), растяжению.

Вторичная защита бетона от коррозии предусматривает нанесение на цементный камень различных лакокрасочных материалов, защитных смесей, покрытий и облицовку различными плитами. Т.е. гидроизоляцию бетона.

К вторичной защите также можно отнести карбонизацию (выдержку бетона на воздухе).

Защита бетона от коррозии  лакокрасочными и акриловыми покрытиями применяется при воздействии на него твердых и газообразных сред. Образовавшаяся защитная пленка эффективно защищает поверхность бетона не только от воздуха и влаги, но и от воздействия различных микроорганизмов.

Защита бетона от коррозии мастиками применяется при воздействии на него влаги, контакте с твердыми средами. Часто применяются мастики на основе различных смол (смолизация).

Защиту бетона от коррозии уплотняющими пропитками используют почти во всех  средах (жидкой, газообразной), особенно при повышенной влажности, кроме того применяют перед нанесением ЛКМ. Уплотняющие пропитки заполняют наружный слой бетона, придавая ему хорошие гидрофобные свойства, снижают водопоглощение.

Биоцидные материалы применяются для защиты бетона от воздействия различных видов грибков, плесени, бактерий, микроорганизмов. Химически активные вещества биоцидных добавок заполняют поры бетона и  уничтожают бактерии.

Защита бетона от коррозии оклеечными покрытиями применяется при эксплуатации бетонного камня в жидких средах, грунтах с высокой влажностью и местах частого смачивания электролитом. Например, нижнюю часть бетонного волнореза оклеивают полиизобутиленовыми пластинами.

Как оклеечные покрытия могут быть использованы полиэтиленовая пленка, полиизобутиленовые пластины, рулоны нефтебитума. Они могут также выполнять роль непроницаемого подслоя в облицовочных покрытиях.

Наиболее эффективна комплексная защита бетона от коррозии, т.е. как первичная, так и вторичная.

Источник: https://www.okorrozii.com/korroziabetona.html

Коррозия бетона и арматуры: разновидности процесса и способы защиты

Бетон, благодаря своим техническим характеристикам и возможностям дизайна, завоевал лидирующее место на рынке строительных материалов. Однако и он, подвергаясь агрессивным внешним воздействиям, постепенно разрушается с ухудшением потребительских качеств.

Этот процесс называется коррозией бетона. Согласно современным представлениям, коррозия представляет собой целый ряд химических, физико-химических реакций и биологических процессов, спровоцированных воздействием внешней среды и приводящих к разрушению материала.

Виды коррозии бетона

Различают три основных вида коррозии этого строительного материала:

  • К коррозии первого типа относятся все процессы, возникающие в бетоне под воздействием мягких вод. При этом составляющие цементного камня растворяются в воде и уносятся ею. Этот процесс может протекать с различной скоростью. В плотных бетонах массивных гидросооружений коррозионный процесс протекает медленно и может растянуться на несколько десятилетий. В тонкостенных бетонных конструкциях компоненты цементного камня разлагаются быстро, и через несколько лет эксплуатации может возникнуть необходимость в ремонтных работах. Если через бетон начинается процесс фильтрации воды, то разложение составляющих бетона ускоряется, из материала выносится большое количество гидроксида кальция и бетон становится высокопористым, что значит – непрочным.

Вымывание гидроксида кальция замедляется, если бетонный элемент находится на воздухе. Под воздействием углекислого газа воздуха гидроксид кальция преобразуется в карбонат кальция.

Поэтому бетонные блоки, предназначенные для сооружения гидротехнических объектов, до опускания на место установки в течение нескольких месяцев выдерживают на воздухе.

Эта мера дает время для карбонизации гидроксида кальция на поверхности бетона.

  • Коррозия второго типа — химическая коррозия — включает те процессы, которые протекают в бетоне при взаимодействии химических веществ, содержащихся в воде или окружающей среде, с составляющими цементного камня. В результате этих реакций в теле бетона образуются легкорастворимые продукты и аморфные массы, не имеющие вяжущей способности. Из-за этого бетон может постепенно превратиться в ноздреватую массу с предельно низкой прочностью. Например, к этому типу относится сульфатная коррозия, которая возникает вследствие взаимодействия бетона с водой, содержащей большое количество сульфатов.

Из процессов коррозии второго типа наибольшее значение имеют магнезиальная и углекислотная коррозия.

  • Коррозия третьего вида включает процессы, при которых в капиллярах и порах бетона накапливаются малорастворимые соли. Кристаллизация этих солей является причиной возникновения напряжений в капиллярах и порах, что приводит к разрушению структуры бетона. Наибольшее практическое значение в процессах этой категории имеет сульфатная коррозия.

Кроме перечисленных типов коррозионного разрушения, вызванного воздействием на бетон жидкости, различают биологическую коррозию. Ей подвергаются, в основном, здания пищевой промышленности. Причиной её возникновения являются грибки, бактерии, водоросли. Разрушение бетона вызывают продукты их метаболизма. Особенно этот процесс активизируется в условиях высокой влажности.

Защита бетона от коррозии путем повышения стойкости самого материала

Многие мероприятия по борьбе с коррозией являются сложно выполнимыми или не слишком эффективными. На практике стараются использовать наиболее простые и недорогие способы и, прежде всего, повышают устойчивость самого бетона путем применения коррозионностойкого цемента или придания материалу высокой плотности и водонепроницаемости.

  • Использование коррозионностойких цементов. В некоторых случаях возникновение сульфатной коррозии бетона можно избежать, применив вместо портландцемента или шлакопортландцемента цементы, обладающие сульфатостойкостью. Эти специальные цементы содержат активные компоненты, которые позволяют повысить стойкость бетона не только к сульфатным, но и к пресным водам.
  • Повышение плотности бетона. Этот вид борьбы с коррозией является эффективным способом защиты материала от коррозионных процессов всех видов. Увеличение плотности бетона снижает его водонепроницаемость. Это затрудняет проникновение агрессивных сред в поры материала. Для изготовления бетона высокой плотности используют цементы с малой водопотребностью, снижают водоцементное соотношение, с особой тщательностью уплотняют смесь при изготовлении бетонного элемента.

Если эти мероприятия не дали результата, то прибегают к оптимальному в конкретном случае способу гидроизоляции.

Виды гидроизоляции

Одним из наиболее распространенных способов гидроизоляции для изделий из бетона и железобетона – свай, труб, колонн, плит – является пропиточная гидроизоляция.

Для эффективной защиты материала от разрушающего действия коррозии достаточно его пропитки на глубину 10-15 мм. Поверхностный водонепроницаемый слой создает защиту от проникновения воды для всего остального объема конструкционного элемента.

Способы пропитки различают по температуре и давлению. По температуре пропитки бывают горячие и холодные.

  • Для горячей пропитки используются нефтяные битумы, парафины, петролатум, синтетические составы. Операцию пропитки осуществляют, как правило, в ваннах при температурах 80-180°С. При нагревании пропиточный состав переходит в жидкое состояние, его вязкость снижается, он легко проникает в поры бетона, плотно их закупоривая при застывании.
  • В качестве холодных пропиток используют составы, основой которых являются минеральные вяжущие вещества – цемент, силикат натрия, или органические низко- и высокомолекулярные вещества – стирол, метилметакрилат, полиуретан.

Пропиточная гидроизоляция может осуществляться при различном давлении:

  • Наиболее простая операция – пропитка в условиях атмосферного давления. При этом процессе проникновение состава в поры происходит только благодаря капиллярному эффекту.
  • Пропитка в автоклавах производится при давлении 0,6-1,2 МПа, но, несмотря на высокое давление, скорость процесса увеличивается не более чем в два раза. Это связано с наличием воздуха в порах, занимающего часть объема и оказывающего противодействие пропиточному составу.
  • Вакуумирование повышает эффективность обработки бетона в 3-4 раза. Пропиточные составы легко проникают в поры, из которых откачан воздух, не встречая противодействия.

Поверхностную пропитку проводят непосредственно на объекте составами с высокой проникающей способностью. Обработка, как правило, проводится дважды.

Другие виды гидроизоляции: инъектирование, гидрофобизация, мастичная и рулонная оклеечная гидроизоляция.

Коррозионное разрушение арматуры в бетоне

Срок службы строительных конструкций сокращает не только коррозия бетона, но и коррозия металлической арматуры. Процесс разрушения металла осуществляется в течение некоторого времени, но определить точный срок службы металлических элементов теоретически невозможно. Особенно опасной является коррозия арматуры в тяжело нагруженных конструкциях.

Для предотвращения коррозии необходимо позаботиться, чтобы в составе бетона не находились вещества, агрессивно относящиеся к металлу. Но на практике эта задача является неосуществимой, поскольку невозможно проверить химический состав всех заполнителей бетона.

Коррозия арматуры инициируется элементами, содержащимися в воздухе и влаге, проникающими через поры бетона.

Из-за неравномерности этого процесса на разных участках арматуры возникают различные потенциалы, что становится причиной электрохимической коррозии.

Скорость этого коррозионного процесса возрастает с повышением пористости и влагопроницаемости материала, а также из-за увеличения концентрации электролита, которую повышают растворенные в воде вещества.

Большой урон металлической арматуре наносит электрокоррозия, возникающая благодаря токам утечки и блуждающим токам, которые появляются в местах расположения электроопор.

Железобетонные опоры контактных сетей являются наиболее уязвимыми составляющими на электрифицированных участках железных дорог.

Способы борьбы с коррозией арматуры

В современном строительстве применяются водоотталкивающие смазки и защитные покрытия для арматуры. Одним из способов защиты металлических элементов является обеспечение бетонной подушки необходимой величины с помощью фиксаторов.

Читайте также:  Код краски по вин-коду: расшифровка и место расположения на авто

Одной из основных трудностей борьбы с коррозией арматуры является невозможность повторной обработки металла, которую можно проводить для открытых металлоконструкций.

Обратите внимание

Наиболее перспективным направлением считается использование в составе бетонов полимерных смесей. Полимеры, вводимые в бетон в сочетании с цементом, создают дополнительную защиту арматуре. В некоторых случаях цемент полностью заменяют полимерами, получая полимербетон.

Для тонкостенных конструкций возможно использование принципиально новых материалов:

  • сталефибробетон представляет собой бетонную смесь, в которую добавляют обрезки стальной проволоки, занимающие до 6% от общего объема материала;
  • в стеклофибробетон добавляют, помимо традиционных компонентов, щелочестойкое стекловолокно.

Пока не найдены универсальные и эффективные способы борьбы с коррозией металла в железобетоне, строители вынуждены закладывать арматуру в большем количестве, чем положено в соответствии с техническими расчетами.

Источник: https://www.navigator-beton.ru/articles/zashhita-betona-i-armatury-ot-korrozii.html

Методы защиты бетона от коррозии

Агрессивная окружающая среда негативно влияет на состояние строительных материалов. Воздействия солей, углекислого газа, воды, а также перепады температур (циклы заморозков-оттепелей) зачастую приводят к коррозии. Поэтому защита бетона от коррозии – важнейшая задача при строительстве или эксплуатации любых объектов.

Причины коррозииБетон, произведенный на минеральной основе, имеет капиллярно-пористую структуру и подвержен наибольшему воздействию в сравнении с другими материалами.

В результате атмосферного воздействия в его пористой структуре образуются кристаллы, увеличение которых приводит к появлению трещин.

Карбонаты, сульфаты и хлориды, в большом количестве растворенные в воздухе, также оказывают разрушительное влияние на строительные конструкции.

Виды коррозии

Коррозия бетона подразделяется на три вида. Основным критерием такой классификации является степень ухудшения его характеристик и свойств.• Первая степень – вымывание составных частей бетона;• Вторая степень – образование продуктов коррозии без вяжущих свойств;• Третья степень – накопление малорастворимых кристаллизующихся солей, которые увеличивают объем.

Методы защиты

Для защиты бетона и повышения его долговечности вам следует применять первичную и вторичную защиту.К методам первичной защиты относится введение различных модифицирующих добавок.

Они могут быть пластифицирующие (увеличивающие), стабилизирующие (предупреждающие расслоение), водоудерживающие, а также регулирующие схватывание бетонных смесей, их плотность, пористость и т. д.

К методам вторичной защиты относится нанесение различных защитных покрытий:• Биоцидные материалы – уничтожают и подавляют грибковые образования на бетонных конструкциях. Принцип действия заключается в проникновении химически активных элементов в структуру бетона, и заполнении ими микротрещин и пор.

• Оклеечные покрытия – применяются при воздействии жидких сред (к примеру, если бетонная свая подтапливается подземными водами), в грунтах, а также в качестве непроницаемого подслоя в облицовочных покрытиях. Это могут быть рулоны нефтебитума, полиэтиленовая плёнка, полиизобутиленовые пластины и т. п.

• Уплотняющие пропитки – придают бетону высокие гидрофобные свойства, резко повышают водонепроницаемость и снижают водопоглощение материала. Благодаря этим свойствам их применяют в условиях повышенной влажности и в местах, где присутствует необходимость обеспечения специальных санитарно-гигиенических требований.

• Лакокрасочные и акриловые покрытия – образуют атмосферостойкую, прочную и долговечную защиту. Так, например, акрил предотвращает разрушение, создавая полимерную пленку. Еще одним плюсом подобного метода борьбы с коррозий является защита поверхности от грибков и микроорганизмов.

• Лакокрасочные мастичные покрытия – используются при воздействии жидких сред, а также при непосредственном контакте бетона с твердой агрессивной средой.

Антикоррозийные покрытия можно применять везде, где существует подобная необходимость для бетона. Конструкции из этого материала встречаются в полах и стенах жилых помещений, фундаменте, гаражных комплексах, оранжереях, теплицах, очистных сооружениях, коллекторах. Также при выборе защитных средств вам следует учитывать особенности воздействия среды, возможное физическое и химическое воздействие.

Источник: Diy.ru

Источник: http://sotok.net/strojka/839-metody-zashhity-betona-ot-korrozii.html

Виды коррозии бетона, способы предотвращения его разрушения

Срок эксплуатации бетонных конструкций рассчитан на длительный период времени — от 60 до 100 лет. Но на практике, уже спустя 2-3 года, могут появляться следы коррозии и выкрашивания. Почему так происходит и какие меры следует предпринимать, чтобы предотвратить коррозию бетона, подробно разберем в этой статье.

Основные виды коррозионных процессов

Класс и марка бетона зависят от процентного содержания цемента в составе. Именно качество цемента определяет такие свойства смеси как морозостойкость и водонепроницаемость.

Но есть еще одна немаловажная характеристика — подвижность смеси. Для достижения нужных параметров расплыва, жесткости и степени уплотняемости, в смесь добавляют пластификаторы.

Это позволяет избежать образования крупных пор, воздушных карманов и обезопасить конструкцию от коррозии в будущем.

Важно

С помощью добавок исключается появление крупных пор, тогда как бетон сам по себе — пористый материал. Связано это с тем, что в составе смеси используется вода, которая при высыхании испаряется. Образовавшиеся поры становятся лазейкой для разрушительных воздействий.

Коррозия подразделяется на четыре типа:

  • физико-химическая;
  • биологическая;
  • химическая;
  • радиационная.

Разрушение бетона от радиации — самое редкое явление, несмотря на то, что гранитный щебень, используемый в некоторых смесях, имеет собственный радиационный фон. Но он настолько незначителен, что существенно повлиять на прочность конструкции не может.

Коррозия от радиации происходит следующим образом:

  • длительное воздействие излучения меняет кристаллическое состояние на аморфное;
  • происходит нарушение структуры материала и снижение прочности;
  • возрастает внутреннее напряжение и на бетоне появляются трещины.

Физико-химические факторы

Чем больше циклов замораживания и размораживания происходит, тем больше влаги проникает в поры. При низких температурах вода превращается в кристаллы льда, которые расширяются и постепенно разрушают конструкцию. Как следствие, бетон трескается и выкрашивается.

Биологические причины

Нарушение условий эксплуатации может стать причиной биологической коррозии бетонной конструкции. При постоянной сырости на поверхности сооружений развиваются микроорганизмы, продукты жизнедеятельности которых разрушительно влияют на структуру бетона.

Химическое воздействие

Атмосферные осадки в сочетании с углекислым газом могут оказывать различное влияние на бетонные конструкции в зависимости от того, что остается на поверхности в результате: хлориды, карбонаты, сульфаты или окись азота. Так может происходить три типа процессов:

  1. Выщелачивание водами с малой жесткостью влечет вымывание компонентов, растворимых в щелочной среде. Признаки процесса — налет или потеки белого цвета. Иногда такая химическая реакция лишь увеличивает стойкость бетона к внешним воздействиям за счет образования коллоидного слоя.
  2. Кристаллизация в связи с образованием плохо растворимых соединений. При контакте с сульфатами такие соединения кристаллизуются и расширяют бетон.
  3. Растрескивание из-за влаги в атмосфере происходит по причине образования рыхлых малорастворимых веществ, которые с течением времени проникают с поверхности внутрь конструкции. Обменные реакции усиливают коррозию бетона.

Все защитные меры должны производиться в комплексе:

  • правильное определение проектной марки бетона;
  • закупка у компаний, придерживающихся технологии производства;
  • грамотная укладка и контроль набора прочности до достижения 70% от проектной;
  • предотвращение быстрого высыхания и воздействия в этот период прямого солнечного света;
  • использование методик по гидроизоляции поверхности конструкций.

Следует избегать постоянной сырости в тех случаях, когда для возведения сооружений не использовался мостовой бетон. При необходимости производят обработку антисептическими пропитками или сухими смесями.

Железнение поверхностей

Для повышения прочности и устойчивости к влаге, а также химическим веществам, часто производят железнение бетона.

Этот способ применяется на этапе формального застывания смеси, когда в поверхность втираются смеси с алюминатом натрия, жидким стеклом, корундом, гранитным или кварцевым наполнителями. Полимерные армирующие добавки улучшают адгезию и усиливают эффект железнения.

Минус способа в том, что он выполняется вручную и является достаточно трудоемким, поэтому подходит для применения на небольших объектах.

Гидроизоляционные составы и материалы

К такому типу защиты от коррозии можно отнести целый перечень методик:

  • инъекционную;
  • проникающую;
  • разделительную.

Метод инъекции — инновационный, достаточно затратный и требующий специального оборудования, с помощью которого внутрь конструкции вводится гелеобразная субстанция. Образуется плотная водонепроницаемая мембрана, с высокой эффективностью предотвращающая проникновение жидкостей.

Проникающий метод, напротив, легок в применении, а из специального оборудования потребуется пулевизатор для оптимизации процесса нанесения гидроизоляции. Этот способ можно использовать при влажных поверхностях, так как в качестве катализатора выступает вода.

Новая порция влаги запускает химический процесс кристаллизации, что лишь улучшает прочностные характеристики бетона.

Из дополнительных преимуществ стоит отметить паропроницаемость кристаллического слоя, образующегося после нанесения гидроизоляционных составов, что исключает парниковый эффект.

И последний метод подразумевает создание разделительного слоя между поверхностью бетона и отделочными материалами. Плоскости конструкций обмазывают полимерными, битумно-латексными и полиакриловыми составами.

Это гарантирует повышенный уровень влагоизоляции, пожаробезопасности и морозостойкости.

К преимуществам следует отнести дешевизну метода, к недостаткам — невозможность использования, если проектом не предусмотрена декоративная отделка.

При правильном проектировании, возведении и эксплуатации сооружений из бетона, их долговечность превышает сроки службы построек из любых других материалов. Если остаются сомнения, что самостоятельно удастся выполнить все этапы строительства правильно, то непременно следует обратиться к профессионалам.

Источник: https://dvabrevna.ru/stroitelstvo/kakimi-byivayut-vidyi-korrozii-betona.html

Коррозия бетона. Объемная и поверхностная защита бетона SCHOMBURG и STEULER

Бетон – сложный композиционный материал, состоящий из цементного вяжущего, минеральных заполнителей, воды и модифицирующих добавок.

Основными компонентами гидравлического цементного вяжущего являются двойные и тройные соединения, состоящие из оксидов кальция, алюминия, кремния и железа.

К ним относятся: монокальциевый силикат CaO * SiO2, двухкальциевый силикат 2CaO * SiO2 (белит), трехкальциевый силикат 3СаО * SiO2 (алит), трехкальциевый алюминат 3СаО * Al2O3, четырехкальциевый алюмоферрит 4СаО * Al2O3 * Fe2O3 (целит).

Совет

Следует отметить, что данные обозначения условны, поскольку традиционно представляемые в виде оксидов соединения являются сложными солями и диссоциируют в воде с образованием катионов кальция, а также силикатных, алюминатных и ферритных анионов.

В основе твердения цементного вяжущего лежат химические реакции гидратации силикатов и алюминатов кальция. В качестве побочного продукта образуется гидроксид кальция или свободная известь Са(ОН)2.

2(3СаО * SiO2) +  6Н2О  →  3СаО * SiO2 *3Н2О + 3Са(ОН)2

  1. 2. Причины коррозии бетона
Читайте также:  Как пользоваться монтажной пеной: тонкости работы с профессиональной и бытовой пеной

Капиллярно-пористая структура бетона обусловлена многокомпонентностью состава различной степени дисперсности и физико-химическими процессами усадки. Для получения необходимой подвижности бетонной смеси добавляется от 50 до 70 масс.% воды.

В процессе твердения химически связывается лишь 24 – 28%. Усадка бетона вызывается, во-первых, потерей лишней воды при твердении (физическая усадка) и, во-вторых, образованием при гидратации менее объемных гидратированных структур (контракционная усадка).

Это приводит к трещинообразованию и дальнейшему развитию сети капилляров и пор. Поверхность бетона становится уязвимой для воды и присутствующих в окружающей атмосфере газов.

Кроме того, свободная известь в бетоне обладает высокой химической активностью и реагирует с атмосферными газами и грунтовыми водами, что вносит существенный вклад в коррозию поверхности.

  1. 3. Основные процессы коррозии бетона
  • Замораживание – оттаивание. Находящаяся в порах бетона вода при замерзании увеличивается в объеме, создавая давление кристаллизации и провоцируя механическую деструкцию материала.
  • Свободная известь вступает в химические реакции с углекислым газом воздуха (карбонизация), сернистым газом, оксидами азота, попадающими в атмосферу из выхлопных газов и промышленных выбросов, что приводит в условиях влаги к кислотному разрушению бетона.
  • Гигроскопичные водорастворимые соли грунтовых вод разрушающе действуют на материал за счет давления кристаллизации и гидратации солей, а также за счет возможных химических реакций со свободной известью и составляющими цементного камня.
  • Все органические и неорганические растворы кислого характера (рН 10 ммоль/л

    рН-фактор < 3,5 или расход основания для слабодиссоциирующих кислот > 10 ммоль/л

    рН-фактор > 13 или

    концентрация > 10 М.%

    Кислотное число > 0,5 мг КОН / г

    Из других веществ могут быть агрессивными для бетона:

    • Растительные и животные жиры и масла
    • Растворы солей (сульфаты, хлориды, магнезиальные и аммонийные соли)
    • Сульфиды
    • Глицерин
    • Формальдегид
    • Фенолы, крезолы
    • Низкомолекулярные эфиры (бутилацетат)
    • Пластификаторы (дибутилфталат)

    Действие этих веществ зависит от их концентрации, рН-фактора, продолжительности воздействия, поэтому выбор защиты определяется конкретными условиями.

    В сооружениях из железобетона следует учитывать:

    • Возможность каталитического действия стали на реакции гидролиза в щелочной среде бетона (например, отщепление хлор-ионов от тетрахлорметана)
    • При действии солей, особенно хлоридов, агрессивное действие может быть направлено преимущественно на арматуру;
    • Достаточность толщины бетонного слоя над арматурой;
    • Водонепроницаемость бетона;
    • Снижение сцепления бетона с арматурой под действием некоторых сред, например – минеральных масел и жиров.

    Поэтому при строительстве новых и восстановлении старых сооружений основными задачами являются эффективность и долговечность защиты, что возможно лишь при использовании современных системных технологий.

    Системность в выполнении ремонтно-защитных работ подразумевает использование материалов одного производителя с такими требованиями как:

    • хорошая совместимость компонентов системы,
    • безусадочность ремонтных растворов,
    • ранний набор прочности,
    • трещиностойкость,
    • атмосферостойкость,
    • индивидуально подобранная химически стойкая защита.

    При защите бетонной поверхности тонкослойными синтетическими покрытиями, используются преимущественно эпоксидные или полиуретановые смолы; в условиях жесткой агрессии – смолы на основе виниловых эфиров, фурановые полимеры и композиции на основе жидкого стекла.

    Необходимыми требованиями к поверхности являются:

    • Прочная ровная основа, без изъянов и трещин.
    • Влажность, не превышающая 4%.
    • Изоляция от наружного подпора грунтовых вод.

    При соблюдении этих условий, выборе надежных материалов и строгом выполнении технологии защита может быть и эффективной и долговечной.

    5.1. Очистка и защита замасленных поверхностей

    Серьезной проблемой, в частности, является очистка, подготовка и защита замасленных, контактирующих с нефтепродуктами бетонных поверхностей.

    Полы и резервуары нефтеперерабатывающих производств, очистные сооружения – все минеральные поверхности, контактирующие с сырой нефтью, маслами, соляркой, мазутом и пр.

    , с трудом поддаются очистке, отмывке и последующей защите. Проблемой является и изоляция швов на замасленных поверхностях.

    Обратите внимание

    Создаваемая антиадгезионная прослойка является серьезной помехой в проблемах реконструкции и противокоррозионной защиты.

    Технология SCHOMBURGпо обновлению и защите бетонных поверхностей, контактирующих с маслами и нефтепродуктами, включает три основных этапа:

    1. 1. Очистка.Для очистки используется специальное концентрированное средство ASOR008 Bioversal. Степень разведения зависит от характера и интенсивности загрязнения и находится в пределах от 1 : 5 до 1 : 10. Средство наносится распылением, и после обработки щеткой поверхность основательно промывается водой.
    2. 2. Грунтование. Для грунтования очищенных, промытых, слегка влажных бетонных поверхностей перед последующей защитой следует применить уникальную грунтовку ASODURSG2. Это плотная водостойкая и маслостойкая двухкомпонентная эпоксидная смола в отличие от всех остальных эпоксидных композиций обладает очень высокой адгезией к влажному бетонному основанию (3,6 – 3,8 МПа). Плотность и уровень адгезионной прочности ASODURSG2, высокое противостояние отрыву удерживают оставшиеся в глубинных слоях бетона остатки масел, не позволяя им выйти на поверхность. Грунтовка незаменима и в условиях внешнего воздействия грунтовых вод.
    3. 3. Защита. Устойчивостью к маслам и нефтепродуктам обладают эпоксидные композиции. Для применения в качестве накатываемых покрытий на бетонные поверхности, может. быть рекомендована, в частности:

    ASODURTEдвухкомпонентная тиксотропная эпоксидная смола. В отвержденном состоянии высокоэластична, износостойка и работоспособна в интервале температур от –30оС до +80оС.

    Для наливного пола в условиях механических нагрузок (проходы людей, транспорт, станки и пр.) в качестве наливного покрытия применяется прочная, износостойкая эпоксидная композиция ASODURB351 – промышленный пол.

    5.2 Специализированная защита от концентрированных минеральных кислот (серная, соляная, азотная кислоты) материалами компаний STEULER и SCHOMBURG

    1. Подготовка поверхности осуществляется в соответствии с  требованиями, предъявляемыми к поверхности, изложенными в формуляре 010.
    1. Грунтование поверхности: композиция OXYDUR-К 425 на основе ненасыщенного полиэфира. Нанесение двукратное.

    Расход макс. 350 г/м2 за проход.

    1. Обсыпка поверхности кварцевым песком Quarzsand 0,5 – 1,0

    Расход 1 кг/м2.

    1. Нанесение плотной основы – полиуретановая композиция OXYDUR-РТВ, толщиной 3 мм.

    Расход 3 кг/м2.

    1. Укладка кислотостойких керамических плит DS 20 (240 х 115 х 20 мм) на кислотостойкую замазку SäurekittAE– на основе жидкого стекла.

    Альтернатива

    По п.2: Грунтование поверхности материалом ASODURSG2 (0,6 – 0,8 кг/м2) или ASODURGBM(0,3 – 0,5 кг/м2) – SCHOMBURG.

    По п. 4: Нанесение плотной основы – полиуретановая композиция ASOFLEXAKB(2,5 кг/м2) – SCHOMBURG.

    Затем плитка на кислотостойкую замазку SäurekittAE.

    В случае слабокислой среды или непродолжительного воздействия кислот возможно обустройство полимерного пола на основе кислотостойкой эпоксидной смолы ASODURUBS.

    5.3 Защита очистных сооружений в условиях газовой коррозии

    Железобетонные конструкции гидро- и очистных сооружений подвергаются различным видам коррозии. К ним относятся, в частности:

    • Биогенная коррозия, вызванная образованием и интенсивным размножением органических колоний;
    • Углекислотная коррозия, обусловленная синергетическим действием углекислого газа и воды с превращением кальцита в растворимый гидрокарбонат кальция;
    • Сульфатная коррозия, происходящая под действием серосодержащих газов (сероводорода, продукта гниения органического ила и сернистого газа, продукта окисления сероводорода);
    • Аммиачная коррозия, вызываемая продуктами разложения белковых соединений ила – (мочевина, аммиак).

    В сооружениях для бытовых сточных вод дефектные места в бетоне проявляются значительно медленнее в силу более низких химических и термических нагрузок, поэтому они трудно устанавливаются.

    Однако, поверхности газовой зоны резервуаров для органического ила (метантенков) и канализационных труб весьма чувствительны к агрессивному воздействию. Выделяющийся из сточной воды газообразный сероводород проникает во влажный бетон и благодаря серным бактериям превращается в серу и серную кислоту.

    Это приводит к коррозии арматуры и достаточно быстрому разрушению бетона. Особенно уязвимы в этом отношении поверхности колпаков больших резервуаров с органическим илом.

    Важно

    Исходя из необходимости защиты, прежде всего, от коррозионного воздействия газов, следует отдать предпочтение газоплотным поверхностным коррозионностойким покрытиям с высокой степенью адгезии к бетону и металлу, эластичным и трещиностойким, особенно в условиях перепада температур при эксплуатации на открытом воздухе.

    Этим требованиям удовлетворяет композиция ASODURTE, не содержащая растворителей тиксотропная двухкомпонентная –эпоксидная смола.

    ASODURTE высокоэластичен, износостоек, устойчив к агрессии морской воды, сточных вод, нефтепродуктов, разбавленных кислот и щелочей. Покрытие черного цвета с блестящей антиадгезивной поверхностью.

    Работоспособно в интервале температур от –30о до +80оС.

    Расход: 500 г/м2 поверхности при накатываемом способе за 1 рабочий проход. Рекомендуется 2 – 3 рабочих прохода (в зависимости от состояния поверхности) с обсыпкой в промежутке просушенным кварцевым песком.

    Подготовленная и выровненная бетонная поверхность должна быть загрунтована. Обычной грунтовкой для сухой поверхности (уровень влажности не более 4%) является эпоксидная композиция ASODURGBM с расходом от 300 г/м2.

    При условиях, не позволяющих достичь требуемого уровня влажности, возможно грунтование специальным составомASODURSG2 (двухкомпонентная система на основе эпоксидной смолы) с расходом ~600 – 800 г/м2.

    5.4 Универсальная химическая защита

    Для защиты резервуаров, реакторов, ванн, поддонов, лотков, труб и пр., в том числе и нуждающимся в ремонте, перспективным является применение термопласт-облицовок – технология STEULER.

    В старое бетонное сооружение вносится вкладыш из термопласта (полиэтилен высокой плотности, полипропилен), оснащенный с наружной стороны вплавленными анкерами.

    Системный материал монтируется на месте производства работ путем сваривания листов в конструкцию необходимой конфигурации (сложные профили возможно изготавливать на заводе) и заполняется со стороны анкеров высокоподвижным безусадочным раствором.

    Совет

    После твердения раствора образуется единая система – бетон-термопласт-облицовка. Старое сооружение играет, таким образом, роль несъемной опалубки и не требует соответственно длительного ремонта и защиты.

    Вкладыши из термопласта

    Монтаж вкладыша в разрушенную трубу

    Бетон-термопласт-облицовка

    Применение бетон-термопласт-облицовок в новом строительстве и ремонте имеет неоспоримые преимущества, к которым относятся:

    • Универсальная химическая стойкость материала;
    • Водонепроницаемость
    • Антиадгезионная поверхность (не зарастает и легко очищается);
    • Сохранение физических свойств при длительном воздействии агрессивных компонентов;
    • Высокая долговечность – до 50 лет эксплуатации;
    • Физиологическая и экологическая безопасность;
    • Низкая трудоемкость при монтаже и ремонте (сварка);
    • Стойкость материала к низким температурам – до -50оС;
    • Ремонтопригодность
    • Не лимитируемые сроки хранения.

    Источник: http://www.elitstroy.su/stati/korroziya-betona-obemnaya-i-poverxnostnaya-zashhita-betona.html

Ссылка на основную публикацию